Search results for "Human activity recognition"
showing 10 items of 11 documents
SHARP: Environment and Person Independent Activity Recognition with Commodity IEEE 802.11 Access Points
2022
In this article we present SHARP, an original approach for obtaining human activity recognition (HAR) through the use of commercial IEEE 802.11 (Wi-Fi) devices. SHARP grants the possibility to discern the activities of different persons, across different time-spans and environments. To achieve this, we devise a new technique to clean and process the channel frequency response (CFR) phase of the Wi-Fi channel, obtaining an estimate of the Doppler shift at a radio monitor device. The Doppler shift reveals the presence of moving scatterers in the environment, while not being affected by (environment-specific) static objects. SHARP is trained on data collected as a person performs seven differe…
Towards a Smart Campus Through Participatory Sensing
2018
In recent years, the percentage of the population owning a smartphone has increased significantly. These devices provide users with more and more functions that make them real sensing platforms. Exploiting the capabilities offered by smartphones, users can collect data from the surrounding environment and share them with other entities in the network thanks to existing communication infrastructures, i.e., 3G/4G/5G or WiFi. In this work, we present a system based on participatory sensing paradigm using smartphones to collect and share local data in order to monitor make a campus 'smart'. In particular, our system infers the activities performed by users (e.g., students) in a campus in order …
A Trajectory-Driven 3D Channel Model for Human Activity Recognition
2021
This paper concerns the design, analysis, and simulation of a 3D non-stationary channel model fed with inertial measurement unit (IMU) data. The work in this paper provides a framework for simulating the micro-Doppler signatures of indoor channels for human activity recognition by using radiofrequency-based sensing technologies. The major human body segments, such as wrists, ankles, torso, and head, are modelled as a cluster of moving point scatterers. We provide expressions for the time variant (TV) speed and TV angles of motion based on 3D trajectories of the moving person. Moreover, we present mathematical expressions for the TV Doppler shifts and TV path gains associated with each movin…
Human Activity Recognition Process Using 3-D Posture Data
2015
In this paper, we present a method for recognizing human activities using information sensed by an RGB-D camera, namely the Microsoft Kinect. Our approach is based on the estimation of some relevant joints of the human body by means of the Kinect; three different machine learning techniques, i.e., K-means clustering, support vector machines, and hidden Markov models, are combined to detect the postures involved while performing an activity, to classify them, and to model each activity as a spatiotemporal evolution of known postures. Experiments were performed on Kinect Activity Recognition Dataset, a new dataset, and on CAD-60, a public dataset. Experimental results show that our solution o…
A Fog-Based Application for Human Activity Recognition Using Personal Smart Devices
2019
The diffusion of heterogeneous smart devices capable of capturing and analysing data about users, and/or the environment, has encouraged the growth of novel sensing methodologies. One of the most attractive scenarios in which such devices, such as smartphones, tablet computers, or activity trackers, can be exploited to infer relevant information is human activity recognition (HAR). Even though some simple HAR techniques can be directly implemented on mobile devices, in some cases, such as when complex activities need to be analysed timely, users’ smart devices can operate as part of a more complex architecture. In this article, we propose a multi-device HAR framework that exploits the fog c…
EFFICIENT AND SECURE ALGORITHMS FOR MOBILE CROWDSENSING THROUGH PERSONAL SMART DEVICES.
2021
The success of the modern pervasive sensing strategies, such as the Social Sensing, strongly depends on the diffusion of smart mobile devices. Smartwatches, smart- phones, and tablets are devices capable of capturing and analyzing data about the user’s context, and can be exploited to infer high-level knowledge about the user himself, and/or the surrounding environment. In this sense, one of the most relevant applications of the Social Sensing paradigm concerns distributed Human Activity Recognition (HAR) in scenarios ranging from health care to urban mobility management, ambient intelligence, and assisted living. Even though some simple HAR techniques can be directly implemented on mo- bil…
WiWeHAR: Multimodal Human Activity Recognition Using Wi-Fi and Wearable Sensing Modalities
2020
Robust and accurate human activity recognition (HAR) systems are essential to many human-centric services within active assisted living and healthcare facilities. Traditional HAR systems mostly leverage a single sensing modality (e.g., either wearable, vision, or radio frequency sensing) combined with machine learning techniques to recognize human activities. Such unimodal HAR systems do not cope well with real-time changes in the environment. To overcome this limitation, new HAR systems that incorporate multiple sensing modalities are needed. Multiple diverse sensors can provide more accurate and complete information resulting in better recognition of the performed activities. This article…
Hierarchical Syntactic Models for Human Activity Recognition through Mobility Traces
2019
AbstractRecognizing users’ daily life activities without disrupting their lifestyle is a key functionality to enable a broad variety of advanced services for a Smart City, from energy-efficient management of urban spaces to mobility optimization. In this paper, we propose a novel method for human activity recognition from a collection of outdoor mobility traces acquired through wearable devices. Our method exploits the regularities naturally present in human mobility patterns to construct syntactic models in the form of finite state automata, thanks to an approach known asgrammatical inference. We also introduce a measure ofsimilaritythat accounts for the intrinsic hierarchical nature of su…
Human Activity Signatures Captured under Different Directions Using SISO and MIMO Radar Systems
2022
In this paper, we highlight and resolve the shortcomings of single-input single-output (SISO) millimeter wave (mm-Wave) radar systems for human activity recognition (HAR). A 2×2 distributed multiple-input multiple-output (MIMO) radar framework is presented to capture human activity signatures under realistic conditions in indoor environments. We propose to distribute the two pairs of collocated transmitter–receiver antennas in order to illuminate the indoor environment from different perspectives. For the proposed MIMO system, we measure the time-variant (TV) radial velocity distribution and TV mean radial velocity to observe the signatures of human activities. We deploy the Anc…
A Federated Learning Approach for Distributed Human Activity Recognition
2022
In recent years, the widespread diffusion of smart pervasive devices able to provide AI-based services has encouraged research in the definition of new distributed learning paradigms. Federated Learning (FL) is one of the most recent approaches which allows devices to collaborate to train AI-based models, whereas guarantying privacy and lower communication costs. Although different studies on FL have been conducted, a general and modular architecture capable of performing well in different scenarios is still missing. Following this direction, this paper proposes a general FL framework whose validity is assessed by considering a distributed activity recognition scenario in which users' perso…